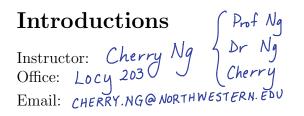
Agenda for Tuesday, March 26, 2024	
Introductions	1
Syllabus	2
What to expect	2
Diving in with proofs	3

Reminders

- Homework 0 due Thursday 11:59 PM
- Make sure you're free on exam dates



Syllabus

The syllabus can be found in Canvas at the following link: https://canvas.northwestern.edu/courses/210072/assignments/syllabus

Important things to note

- Grading HW and exam problems graded out of 5 Only 0,4,5 are possible
- Leniency 1 written HW can be late, no questrons asked. Just upload as usual
- LaTeX Written HW must be typed using LaTeX.
- Exam dates Apr 23, May 21 in discussion
- Discussions Optional but useful because
 1.) feedback
 2.) some of the problems will be exam problems

What to expect

Some reading / videos on your own

Diving in with proofs

Example 1. Discuss what might be a good definitions for an even number and an odd number.

An integer n is even if it can be written in the form n = 2k for some integer k. An integer n is odd if it can be written in the form n = 2k + 1 for some integer k.

Example 2. Prove or disprove the following statement: If n is an even integer, then n^2 is an even integer.

Since n is even, it can be written in the form n = 2k for some integer k. Then $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$. Therefore n^2 is also even because it can be written as twice the integer $2k^2$.

Example 3. Prove or disprove the following statement: The sum of two consecutive integers is odd.

Let n and n + 1 be two consecutive integers. Then their sum is

$$n + (n+1) = 2n + 1.$$

Since their sum can be written in the form 2n + 1 for an integer n, we know their sum is odd.

Example 4. Prove or disprove the following statement: The product of an odd integer and an even integer is odd.

This statement is false. A suitable counterexample is $7 \cdot 6 = 42$, which is even.